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We extend the ideas introduced in the previous work to a more general space-time. In
particular we consider the Kantowski-Sachs space time with space section with topology
R × S2. In this way we want to study a general space time that we think to be the space
time inside the horizon of a black hole. In this case the phase space is four dimensional
and we simply apply the quantization procedure suggested by loop quantum gravity and
based on an alternative to the Schroedinger representation introduced by H. Halvorson.
Through this quantization procedure we show that the inverse of the volume density
and the Schwarzschild curvature invariant are upper bounded and so the space time is
singularity free. Also in this case we can extend dynamically the space time beyond the
classical singularity.
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1. INTRODUCTION

This work is a generalization of the recent results obtained for the
Schwarzschild solution inside the horizon and near the singularity where the
operator 1/r and so the curvature invariant Rµνρσ Rµνρσ = 48M2G2

N/r6 are non
divergent in the quantum theory. This work is suggested from a paper on Loop
Quantum Cosmology (Ashtekar et al., 2003; Bojowald, 2001a,b). In this paper
we use the same non Schrödinger procedure of quantization used in the previous
paper (Leonardo, 2004) and in the work of V. Husain and O. Winkler on quantum
cosmology but introduced by Halvorson (2001) and also by Ashtekar et al. (2003).

In this paper we focus on a general two dimensional minisuperspace with
space section of topology R × S2 which is know as Kantowski-Sachs space time
(Christodoulakis, 2002; Halliwell and Louko, 1990; Kantowski and Sachs, 1966;
Luca and Torrence, 1990). The Schwarzschild space time inside the horizon is
a particular representative of this class of metrics. Using this method (Gambini
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et al., 1998; Thiemann, 1996, 1998a,b) we can define the inverse volume density
and the Schwarzschild curvature invariant in term of the holonomy analog and the
volume itself and we show that these quantity are finite and upper bounded. Using
also the result in (Gambini et al., 1998; Thiemann, 1996, 1998a,b) we can obtain
the Hamiltonian constraint in terms of the volume and at the quantum level we
have a discrete equation depending on two parameters for the coefficients of the
physical states.

The paper is organized as follows: in the first section we report the metric
we want to study; we consider this space time as the interior of a black hole
in a more general form respect to the work (Leonardo, 2004). We calculate the
hamiltonian constraint, the volume operator and we introduce the fundamental
variables of the theory. In the second section we quantize the system using the
non Schrödinger procedure of quantization (Ashtekar et al., 2003; Halvorson,
2001; Viqar and Oliver, 2003). In this section we show that the inverse volume
operator and a quantity inspired from the Schwarzschild curvature invariant are
singularity free in quantum gravity. We conclude calculating the states that resolve
the Hamiltonian constraint.

2. THE SPHERICALLY SYMMETRIC SPACE-TIME

We want to study a generical metric for an homogeneous, anisotropic space
with spatial section of topology R × S2, this is the Kantowski-Sachs Space-Time.
In this case we have two independent functions of the time a(t) and b(t) and the
metric assume the following form

ds2 = −dt2 + a2(t)dr2 + b2(t)(sin2 θdφ2 + dθ2). (1)

In the previous paper (Leonardo, 2004) we considered the Schwarzschild solution,
so a(t) was not a general function of t but it was a function of b(t) which was the
only independent function.

The Diff-constraint for the class of metrics in (1) is identically satisfied and
the Hamiltonian constraint in terms of ȧ and ḃ is

HL = |a| ḃ2 + 2 ȧ ḃ b sgn(a) + |a|, (2)

in terms of pa and pb is

Hc = GN |a| p2
a

2R b2
− GNpapb sgn(a)

Rb
− R

2GN

|a|. (3)

The volume of a space section is

V =
∫

dr dφ dθ h1/2 = 4πR|a|b2. (4)
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where R is a cutt—off on the space radial coordinate. We can work also with radial
densities because the model is homogeneous and all the following results remain
identical.2 In another way, the spatial homogeneity enable us to fix a linear radial
cell Lr and restrict all integrations to this cell (Ashtekar et al., 2003; Bojowald,
2001a,b). We will consider this second possibility in the rest of this paper and we
will take R = lP . We have two canonical pairs, one is given by a ≡ xa and pa , the
other is given by b ≡ xb and pb for which the Poisson brackets are {xa, pa} = 1
and {xb, pb} = 1. From now on we consider xa, xb ∈ R and we will introduce the
modulus of xa and xb where it is necessary. This choice to take xa, xb ∈ R is not
correct classically because we have a singularity in b = 0, but the situation can be
(a priori) different in quantum theory; and it will be, as we will see.

Following (Leonardo, 2004) we introduce an algebra of classical observable
and we write the quantities of physical interest in terms of these variable. As in
loop quantum gravity (Ashtekar, 2004; Rovelli, 2004; Thiemann, 2001, 2003) we
use the fundamental variables xa, xb and

Uγa
(p) ≡ exp

(
8πGNγa

L2
a

i pa

)
,

Uγb
(p) ≡ exp

(
8πGNγb

Lb

i pb

)
, (6)

where γ is a real parameter and L fixes the unit of length. The parameter γ is
necessary to separate the momentum point in the phase space. We will fix the
parameters γa and γb in the Section 1 using the lower eigenvalue of the area
spectrum from full loop quantum gravity. Those variables can be seen as the
momentum analog of the holonomy variables of loop quantum gravity.
We have also that

{xa, Uγa
(pa)} = 8πGN

i γa

L2
a

Uγa
(pa),

{xb, Uγb
(pb)} = 8πGN

i γb

Lb

Uγb
(pb),

U−1
γa

{V m,Uγa
} = (4πR|xb|2)m m |xa|m−1iγa

8πGN

L2
a

sgn(xa),

U−1
γb

{V n,Uγb
} = (4πR|xa|)n 2n |xb|2n−1iγb

8πGN

Lb

sgn(xb). (7)

2 This means that in the classical action for the Kantowski-Sachs minisuperspace model

S = − 1

2 GN

∫
dt dr [a ḃ2 + 2 ȧ ḃ b − a] = − 1

2 GN

∫
dt R [a ḃ2 + 2 ȧ ḃ b − a], (5)

we can absorb the divergent radial cell of length Lr = R into the variable “a” using the rescaling
a = a′/R.
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From those relations we can construct the following quantities that we use
extensively

|xb|2/3

|xa|2/3
= − 3 i L2

a

(4πR)1/3 8πGNγa

U−1
γa

{V 1/3, Uγa
} sgn(xa),

|xa|1/4

|xb|1/2
= − 2 i Lb

(4πR)1/4 8πGNγb

U−1
γb

{V 1/4, Uγb
} sgn(xb),

√
|xa| = − i Lb

(4πR)1/2 8πGNγb

U−1
γb

{V 1/2, Uγb
} sgn(xb),

|xa|1/3

|xb|1/3
= − 3 i Lb

2 (4πR)1/3 8πGNγb

U−1
γb

{V 1/3, Uγb
} sgn(xb). (8)

We use this relation in the next section into the physical quantities. We are
interested to the quantity 1

V
because classically this quantity can diverge as in the

case of the Schwarzschild solution and can produce a singularity. The other very
important operator we will consider is 1/|xb|6 that corresponds to the curvature
invariant RµνρσRµνρσ for the Schwarzschild solution. We are also interested to the
Hamiltonian constraint and to the dynamics of the minisuperspace model.

3. QUANTUM THEORY

We construct the quantum theory in analogy with the procedure used in loop
quantum gravity and in particular following (Ashtekar et al., 2003) but with two
copy of canonical variable. In our model we have two canonical pairs (xa, pa) or
(xb, pb) but we recall the polymer representation (Ashtekar et al., 2003) of the
Weyl-Heisenberg algebra for only one canonical pair that we denote (x, p).

The polymer representation of the Weyl-Heisenberg algebra is unitarily in-
equivalent to the Schroedi-nger representation. Now we construct the Hilbert space
HPoly. First of all we define a graph γ as a finite number of points {xi} on the real
line R. We denote by Cylγ the vector space of function f (k) (f : R → C) of the
type

f (k) =
∑

j

fj e
−ixj k (9)

where k ∈ R, xj ∈ R and fj ∈ C and j runs over a finite number of integer
(labelling the points of the graph). We will call cylindrical with respect to the graph
γ the function f (k) in Cylγ . The real number k is the analog of the connections in
loop quantum gravity and the plane wave e−ikxj can be thought as the holonomy
of the connection k along the graph {xj }.

Now we consider all the possible graphs (the points and their number can
vary from a graph to another) and we denote Cyl the infinite dimensional vector
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space of functions cylindrical with respect to some graph: Cyl = ⋃
γ Cylγ . A

basis in Cyl is given by e−ikxj with 〈e−ikxi |e−ikxj 〉 = δxi ,xj
. HPoly is the Cauchy

completion of Cyl or more succinctly HPoly = L2(R̄Bohr, dµ0), where R̄Bohr is the
Bohr-compactification of R and dµ0 is the Haar measure on R̄Bohr.

The Weyl-Heisenberg algebra is represented on HPoly by the two unitary
operators

V̂ (λ)f (k) = f (k − λ),

Û (µ)f (k) = eiµk f (k), (10)

where λ,µ ∈ R. In terms of eigenkets of V̂ (λ) (we associate a ket |xj 〉 with the
basis elements e−ikxj ) we obtain

V̂ (λ)|xj 〉 = eiλxj |xj 〉,
Û (µ)|xj 〉 = |xj − µ〉. (11)

It is easy to verify that V̂ (λ) is weakly continuous in λ, whence exists a self-adjoint
operator x̂ such that x̂|xj 〉 = xj |xj 〉 (Ashtekar et al., 2003; Halvorson, 2001).

The operator analogy between loop quantum gravity and polymer represen-
tation is the following: the basic operator of loop quantum gravity, holonomies
and electric field fluxes, are respectively analogous to the operators Û (µ) and x̂

with commutator [x̂, Û (µ)] = −µ Û (µ). The commutator is parallel to the com-
mutator between electric fields and holonomies. As, in the polymer representation,
the unitary operator Û (µ) is well defined but the operator p̂ doesn’t exist, in loop
quantum gravity the holonomies operators are unitary represented self-adjoint op-
erators but the connection operator doesn’t exist. As x̂, the electric flux operators
are unbounded self-adjoint operators with discrete eigenvalues.

After this very short review on the polymer representation of the Weyl-
Heisenberg algebra we return to our system. The kantowski-Sachs minisuperspace
model is characterized by two canonical pairs and the Hilbert space is HPoly =
L2(R̄

2
Bohr, dµ0).
A basis in the Hilbert space is the tensor product

|µa〉 ⊗ |µb〉 ≡ |e−iµaka 〉 ⊗ |e−iµbkb〉,
〈µa|νa〉 = δµa,νa

〈µb|νb〉 = δµb,νb
. (12)

The action of the configuration operators V̂a(λa) and V̂b(λb) on the bases is
defined by

V̂a(λa)|µa〉 = eiλa x̂a |µa〉 = eiλaµa |µa〉,
V̂b(λb)|µb〉 = eiλbx̂b/Lb |µb〉 = eiλbµb |µb〉. (13)
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Those operators are weakly continuous in λa , λb and this imply the existence
of self-adjoint operators x̂a and x̂b, acting on the basis states according to

x̂a|µa〉 = µa|µa〉,
x̂b|µb〉 = Lbµb|µb〉. (14)

Now we introduce the operators corresponding to the classical momentum
functions Uγa

and Uγb
of (6). We define the action of Ûγa

≡ Û (γa) and Ûγb
≡ Û (γb)

on the basis states using (11) and using a quantum analog of the Poisson brackets
between xa and Uγa

and xb and Uγb

Ûγa
|µa〉 = |µa − γa〉 Ûγb

|µb〉 = |µb − γb〉,
[x̂a, Ûγa

] = −γaÛγa
[x̂b, Ûγb

] = −γb Lb Ûγb
. (15)

Using the standard quantization procedure [ , ] → ih{ , }, and using the the
first two equations of (7) we obtain

L ≡ La = Lb =
√

8πGN h. (16)

3.1. Non Singular Space-time

In this section we study the inverse volume operator and the Schwarzschild
curvature invariant operator. Those quantities are classically singular in xb = 0.
We will use the same ideas used in loop quantum cosmology (Ashtekar et al.,
2003; Bojowald, 2001a,b).

We recall that given a self-adjoint operator Ô on a Hilbert space, the function
f (Ô) is well defined if and only if f is a measurable function on the spectrum of
Ô. In non relativistic quantum mechanics the spectrum of r̂ is the positive real line,
equipped with the standard Lebesgue measure, therefore the operator 1/r̂ is a well
defined, self-adjoint operator. On the contrary, the spectrum of the operator x̂b in
our minisuperspace model has a discrete topology and the operator (x̂b)−1 is not
a measurable function of x̂b. Since x̂b admits a normalized eigenvector |ν = 0〉,
the naive expression (x̂b)−1 fails to be densely defined on the Hilbert space. This
is the case also for the operators ̂det(E) and its inverse 1̂

det(E)
. A similar problem

arises in the full loop quantum gravity theory and can be resolved using a strategy
due to Thiemann (1996, 1998a,b); Gambini et al. (1998). We will follow the same
strategy in our minisuperspace model. First we note that we can express 1̂

det(E)

and 1̂
xb

in terms of the Poisson brackets between the volume and the fundamental
variables Uγa

and Uγb
, then, when we quantizing the theory, we replace the Poisson

brackets with ih times the commutator.
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We use Eq. (4) and in particular the form V = 4πR|xa| |xb|2. So, the action
of the volume operator on the basis states is

V̂ |µ, ν〉 = 4πR |x̂a| |x̂b|2|µ, ν〉 = 4πRL2 |µ| |ν|2|µ, ν〉. (17)

Now we show that, in the quantum theory, the operator 1/det(E) = 1/
√

h ∼
1/|xa| |xb|2 does not diverge at the classical singularity point xb = 0. We use the
relations (8) and we promote the Poisson brackets to commutators. In this way we
obtain the operator

1̂

det(E)
=

̂( |xa|
|xb|2

)3

γb

̂( |xb|2
|xa|2

)3

γa

̂( |xa|
|xb|

)2

γb

. (18)

The action of this operator on the bases states (for γa = γb = 1)3 is

1̂

det(E)
|µ, ν〉 = 26 315

L2
|µ|5 |ν|6 [|ν − 1|1/2 − |ν|1/2]12 ||µ − 1|1/3 − |µ|1/3|9

× [|ν − 1|2/3 − |ν|2/3]6 |µ, ν〉, (21)

where we defined x̂a|µ〉 = µ|µ〉 and x̂b|ν〉 = Lν|ν〉.
As we can see, the spectrum is upper bounded and so we have no singularity

in the quantum theory in xb = 0.
The other operator we want to study is 1/|xb|6. This operator corresponds to

the curvature invariant RµνρσRµνρσ ∼ 1
x6

b

for the classical Schwarzschild solution.

To obtain information about the singularity at the quantum level, we consider the
operator ̂1/|xb|.

3 To obtain the correct values for the parameters γa and γb used in the paper (γa = γb ∼ 1) we recall
from full loop quantum gravity that the area operator spectrum is

Â|ψ〉 = 8πβl2
P

∑
p

√
jp(jp + 1)|ψ〉, (19)

where β is the Immirzi parameter. In our symmetric model with spatial section of topology R × S2

we have considered an elementary cell I × S2 of volume V = 4πlP |a|b2.
Now we consider three elementary surfaces Ar φ = 2πlP |a||b|, Ar θ = 2πlP |a||b| and Aθ φ =

2π |b|2 respectively bounded by the interval I and the equator of the sphere S2 (θ = π/2), by the
interval I and a circle along the longitude, and by the equator and the longitude for 0 ≤ φ ≤ π ,
0 ≤ θ ≤ π . The action of the area operators on the state |µ = γa, ν = γb〉 is

Âθ φ |γa, γb〉 = 2πl2
P γ 2

b |γa, γb〉
Âr φ |γa, γb〉 = Âr θ |γa, γb〉 = 2πl2

P γaγb|γa, γb〉. (20)

Comparing the lower eigenvalue of the full loop quantum gravity area spectrum A0 = 4π
√

3βl2
P

with (20) we obtain γa = γb =
√

2
√

3β ∼ 0.9. To simplify the formulas we will take γa ∼ γb ∼ 1.
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Using the relations (8), we can define the operator ̂1/|xb| as

1̂

|xb| =
̂( |xa|
|xb|2

)
γb

̂( |xb|2
|xa|2

)
γa

̂( |xa|
|xb|

)
γb

. (22)

The operator ̂1/|xb| is diagonal on the basis states and the spectrum (for
γa = γb = 1) is

1̂

|xb| |µ, ν〉 = 2 36

L
|µ|2 ||µ − 1|1/3 − |µ|1/3|3 |ν|2 [|ν − 1|1/2 − |ν|1/2]4

× ||ν − 1|2/3 − |ν|2/3|3 |µ, ν〉 (23)

This operator does not diverge in ν = 0 (or xb = 0), where the classical
singularity is localized.

We can conclude that the quantity 1/xb, inspired from the Schwarzschild
curvature invariant RµνρσRµνρσ ∼ 1

x6
b

, is not divergent in quantum gravity and it is

possible to extend the space-time beyond the classical singularity in r ≡ xb = 0.
While the boundedness of the operator 1̂/xb is physically appealing, at the

classical level we have the algebraically relation xb

(
1
xb

)
= 1 (where we define

1/xb using the relations (8)) and x̂b admits a normalized eigenvector with zero
eigenvalue. This classical relation should be respected in an appropriate sense.
We can tolerate violations of this relation on states only in the Planck regime; the
equality must be satisfied on states for large eigenvalues, in the sense that it must
be µ � 1 and ν � 1 simultaneously (i.e., with large volume). This is the case
because for large eigenvalues the spectrum of 1̂/xb tends to 1/(L|ν|). Thus on
states representing a large volume the classical algebraic relation is preserved.4

In this section we have defined the operators 1/det(E) and 1/|xb| in (18) and
(22). It is also possible to define the same operators in other classically equivalent
ways. This will lead to inequivalent operators in quantum theory, since the number
of factor Uγa

and Uγb
is different.5 In this section we have considered the simplest

4 We can study the operator ̂1/det(E) in the same way. For this operator we have the same problem in

the singular point ν = 0 . In this point the operators 1̂
det(E)

and ̂det(E) both have zero eigenvalue and

we can repeat the analysis done for the operator xb .
5 It is know that there are ordinament problems in the definition of the inverse volume operator and in

the definition of the Hamiltonian constraint in loop quantum gravity. This freedom is not a problem, it
is an asset. Until now a consistent theory of quantum gravity with a well understood low energy limit
doesn’t exist. The important result is that the operators (inverse volume, curvature invariant and the
Hamiltonian constraint) exist and are finite in quantum theory. The correct variant of the operators
could be selected by some internal consistency that has not yet considered. If we can not select the
correct variant using some consistency, than we have non equivalent quantum theories with the same
classical limit. The physically correct one will have to be determined by experiments (Ashtekar,
2004; Rovelli, 2004; Thiemann, 2001, 2003).
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case with the smallest number of Uγa
, Uγb

factors. In the next section we will
choose the same ordering in the Hamiltonian constraint.

In this section we have studied some operator that are singular in the clas-
sical theory. In particular we obtain that quantum gravity remove the classical
singular behavior. However the ultimate test as to whether or not the classical
singularity persists can be obtained only considering the Hamiltonian constraint.
In the next section imposing the Hamiltonian constraint we will obtain a regular
difference equation which will give an evolution beyond the classical singularity
and we will conclude that the evolution does not stop at the classical singular
point r = 0.

3.2. Hamiltonian Constraint

We said that the Hamiltonian for our system depend on two canonical couples
and we report now this constraint

Hc = GN p2
a

2R

|xa|
x2

b

− GN pa pb

R

sgn(xb) sgn(xa)

|xb| − R

2GN

|xa|. (24)

Now we quantize this Hamiltonian constraint. As we know, the operators pa

and pb don’t exist in our quantum representation and so we choose the following
alternative representation for the operators p2

a and pa pb.
We start from the classical expressions

p2
a = L4

a

(8πGN )2
limγa→0

(
2 − Uγa

− U−1
γa

γ 2
a

)
,

pa pb = L2
a Lb

2(8πGN )2
limγa,γb→0

[(
Uγa

+ Uγb
− Uγa

Uγb
− 1

γa γb

)

+
(

U−1
γa

+ U−1
γb

− U−1
γa

U−1
γb

− 1

γa γb

)]
. (25)

We have a physical interpretation setting γa = γb = lF /LPhys, where LPhys is
the characteristic size of the system and lF is a fundamental length scale. In our
case lF = lP and γa = γb = lP /LPhys (see also the footnote 2).

We are ready to write the Hamiltonian constraint

Ĥ = 1

32π2GNR2γ 2
a γ 4

b

[
2 − Ûa − Û−1

a

] (
Û−1

b [V̂ 1/4, Ûb]
)4 + 36

211π5R4L4GNγ 7
a γ 5

b

×
[(

Ûa + Ûb − Ûa Ûb − 1

2

)
+

(
Û−1

a + Û−1
b − Û−1

a Û−1
b − 1

2

)]
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× (
Û−1

b [V̂ 1/4, Ûb]
)4 (

Û−1
a [V̂ 1/3, Ûa]

)3 (
Û−1

b [V̂ 1/3, Ûb]
)3 +

− 1

8πGNL2γ 2
b

(
Û−1

b [V̂ 1/2, Ûb]
)2

. (26)

Now we resolve the Hamiltonian constraint and we obtain the physical states.
As in non-trivially constrained systems, we expect that the physical states are not
normalizable in the kinematical Hilbert space. However, as in the full loop quantum
gravity theory, we again have the triplet

Cyl ⊂ HPoly ⊂ Cyl∗ (27)

of spaces and the physical state will be in Cyl∗, which is the algebraic dual of
Cyl. A generic element of this space is

〈ψ | =
∑
µ,ν

ψ(µ, ν)〈µ, ν|. (28)

The constraint equation Ĥ |ψ〉 = 0 is now interpreted as an equation in the
dual space 〈ψ |Ĥ †; from this equation we can derive a relation for the coefficients
ψ(µ, ν)

[2α(µ, ν) − 2β(µ, ν) − γ (µ, ν)] ψ(µ, ν) − [α(µ + γa, ν)

−β(µ + γa, ν)]ψ(µ + γa, ν) − [α(µ − γa, ν) + β(µ − γa, ν)] ψ(µ − γa, ν)

+β(µ, ν + γb) ψ(µ, ν + γb) − β(µ, ν − γb) ψ(µ, ν − γb)

+β(µ + γa, ν + γb) ψ(µ + γa, ν + γb)

−β(µ − γa, ν − γb) ψ(µ − γa, ν − γb) = 0 (29)

where the functions α, β, γ are

α(µ, ν) = L2

8π2RGNγ 4
b γ 2

a

(|µ|1/4|ν − γb|1/2 − |µ|1/4|ν|1/2)4,

β(µ, ν) = − L2

2(8π )2GNRγ 5
b γ 7

a

(|µ|1/4|ν − γb|1/2 − |µ|1/4|ν|1/2)4

× (|µ − γa|1/3|ν|2/3 − |µ|1/3|ν|2/3)3(|µ|1/3|ν − γb|2/3 − |µ|1/3|ν|2/3)3

γ (µ, ν) = R

2GNγ 2
b

(|µ|1/2|ν − γb| − |µ|1/2|ν|)2. (30)

The relation (29) determines the coefficients for the physical dual state and we
can interpret this states as quantum space time near the classical point xb = 0,
which corresponds to the singularity of the space time in the case of classical black
hole solution. From the classical Schwarzschild solution (inside the horizon) we
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know that the horizon is localized in “a = 0”. Observing the difference equation
(29) we obtain that the component ψ(µ = 0, ν) is indeterminated for any “ν”
(this is very similar to loop quantum cosmology situation (Ashtekar et al., 2003;
Bojowald, 2001a,b)). So we can identify the boundary of the Kantowski-Sachs
universe in µ = 0 with the horizon of a black hole. At this point we can chose as
boundary condition the value of the wave function ψ(µ, ν) very close to the event
horizon.

From the difference equation (29) we obtain physical states as combinations
of a countable number of components of the form ψ(µ + nγa, ν + mγa)|µ +
nγa, ν + γb〉 (γa ∼ γb ∼ lP /LPhys ∼ 1 at the Plank scale where LPhys ∼ lP (Viqar
and Oliver, 2003); another way to fix the parameters γa and γb is explain in
footnote two); any component corresponds to a particular value of the volume. We
can interprete b as the time and the anisotropy a as the space partial observable
that defines the quantum fluctuations around the Schwarzschild solution. So the
function ψ(µ + γa, ν + γb) is the wave function of the Black Hole inside the
horizon at the time ν + γb and we have a natural and regular evolution beyond
the point ν = 0 where the classical singularity is localized. A solution of the
Hamiltonian constraint corresponds to a linear combination of black hole states
for particular values of the anisotropy a at the time b.

4. CONCLUSIONS

In this work we have applied the quantization procedure of (Viqar and Oliver,
2003) to the Kantowski-Sachs space time (Christodoulakis, 2002; Halliwell and
Louko, 1990; Kantowski and Sachs, 1966; Luca and Torrence, 1990) with space
topology R × S2. This space time contains the part of Schwarzschild solution on
the other side of the horizon as a particular classical solution. The quantization
procedure is alternative to the Schrödinger quantization and it is suggested by loop
quantum gravity.

The main results are:

1. The inverse volume operator has a finite spectrum near the point b = 0; in
particular the operator 1/b, which is the analog of Schwarzschild curvature
invariant RµνρσRµνρσ ∼ 1

b6 , does not diverge for b = 0 in the quantum
theory and we can conclude that the classical Schwarzschild black hole
singularity disappears in quantum gravity,

2. The solution of the Hamiltonian constraint gives a discrete difference
equation for the coefficients of the physical states and we can have many
scenarios to connect our universe to another.

An important consequence of the quantization is that, unlike the classical
evolution, the quantum evolution does not stop at the classical singularity. This
work is useful if we want understand what is the mechanism to resolve the problem
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of the “information loss” in the process of black hole formation (Ashtekar and
Bojovald, 2005).
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